Integration of Microglia into 3D Human IPSC-derived Brain Microphysiological Systems for Disease Modeling

Angela Murchison?, Nicolas Butelet!, Martin Nicholson', Peng Zhou', Dominique V. Lessard?!, Wayne W. Poon'

"NeuCyte, Inc., 319 North Bernardo Avenue, Mountain View, CA 94043

Microglia have been implicated in Alzheimer Disease Genome-wide Association Studies focused on late- A GRN Het B
onset Alzheimer Disease risk (LOAD) in which a number of human-specific genes are connected to o -, = -
modifying disease etiology. Because of this link between microglia and human disease, there is a o
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growing need for a human source of microglia to model aspects of Alzheimer disease and to be utilized = g 9,
to identify AD/ADRD therapeutics. While human primary sources of microglia are difficult to obtain, § %
Induced pluripotent stem cell (iPSC)-derived microglia protocols have been developed to generate a O "
renewable human microglia source, accelerating mechanistic studies on neuroinflammation and AD. ¥ I — O
These in vitro models recapitulate many of the salient features of in vivo microglia. Outside the context C O
: . ! . . . : : . < o
of a brain environment, microglia rapidly undergo transcriptomic changes and de-differentiation. Thus, = : -g
recent chimera models have been developed to study microglia in a homeostatic CNS environment. . - )
While these models better recapitulate relevant disease-specific phenotypes, they are not amenable for & 8w N
high-throughput screening and drug discovery. Here, we describe our development of a 3D <UE)
Microphysiological Systems (MPS) platform incorporating isogenic neurons, astrocytes, and microglia to % ofoses | K
recapitulate AD/ADRD neuropathological phenotypes. The ability of NeuCyte to generate these IPSC- < D " e
derived cells from any genetic background enables identification of non-cell autonomous phenotypes < o -ennwT
and guides therapeutic drug discovery for AD. Importantly, this platform is scalable and translatable to < 823 il
high-throughput drug screening for AD/ADRD. Lastly, because this platform is modular, brain ity
microvascular endothelial cells can be incorporated to recapitulate the CNS/BBB interface in order to N §g: ,
study the role of BBB dysfunction in disease, model ARIA (Amyloid-Related Imaging Abnormalities), and -~ LE 1 - (Dj_)
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1 *Optogenetics Figure 3. iPSC derived ADRD Microglia exhibit canonical markers as well as disease related gene
R expression and functionality. (A) Representative images of WT, GRN*/, GRN”-iMicroglia. (B,C) Microglia

Figure 5. Isogenic microglia rapidly integrate into ADRD MPS. Microglia, labeled with Dil, integrate
within the first week of addition to isogenic ADRD astrocytes and neurons. Ramified processed are seen
iIn the Assembloid and hydrogel MPS models (scale = 50 um).
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are highly pure when assayed by flow cytometry for CD68, CX3CR1, and CD33. Phagocytic activity of the
microglia reveal a cell autonomous phenotype of increased phagocytosis by the GRN”/-microglia (D). Gene
expression analysis demonstrates the Microglia consistently express genes regulating homeostasis (E), as
well as those related to neurodegenerative diseases (F-J).
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Figure 1. Development of an AD/ADRD MPS-NVU platform. (1) The SynFire® Alzheimer Genetic
Universe is composed of NGNZ2 glutamatergic neurons, ASCL1/DLX2 GABAergic neurons, iPSC-derived o |
astrocytes, and iPSC-derived microglia. (2) 3D MPS can be generated in the form of 3D hydrogels or — :
spheroids from iPSC-derived cells containing either isogenic gene-edited or patient-derived iPSCs with go e B e
known AD/ADRD mutations. (3) NIA MPSs can be integrated into an AD/ADRD MPS-NVU B Hofars A HEEparcAsI
(Neurovascular unit) amenable for drug screening. f e
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Figure 2. Development of an NIA for drug screening. (A-D) Isogenic APOE4 and APOE3 iPSC-derived Figure 4. Identification of electrophysiological phenotypes in an AB-treated 3D MPS. AP plaques are 1. Integrate disease ADRD microglia into neuroimmune MPS from additional AD and ADRD disease
Glutamatergic and GABAergic neurons facilitate identification of electrophysiological AD phenotypes visualized with Methoxy-X04 (blue) after incubation with Ap (5um, 7d). (A-D) AP aggregates, labeled with backgrounds to elucidate disease relevant phenotypes.
uncovered by Multi-Electrode Arrays (MEA) for drug screening. (E) Neuronal phenotypes and differences 6E10 AP antibody, co-localize with Methoxy-X04 labeled plaques. (E-K) Neuronal network parameters 2. Test ASOs and compounds in reversing discovered phenotypes.
between disease and healthy controls detected over a 10-week culture window. Significant phenotypes assessed by HD-MEA are altered by AP plaques. (E) Normalized active area, (F) spike amplitude, (G) mean
over multiple timepoints are highlighted in E. Isogenic microglia added to the electrophysiologic system firing rate, (H) normalized mean interspike interval (ISI), (I) the 10t percentile normalized firing rate, and (J)
do not affect baseline ontogeny (F-G). the 90t percentile normalized firing rate are shown. (F) Representative neuronal axon tracing similarly Funding Source: AG068992 and AG084421 (W.W.P). We thank Dr. Edsel Abud for insightful discussions
shows a decreased propagation across the 7 days of AP treatment (scale = 100um). on microglia and astrocyte biology.
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